Outcome 3 HOMEWORK

- 1. Solve $z^2 + 2z + 5 = 0$ and represent the solutions on an Argand diagram.
- 2. Find the square roots of 7 24i.
- 3. Verify that z = 1 + i is a root of the equation

$$z^4 + 3z^2 - 6z + 10$$

and find the other roots.

- 4. Interpret geometrically in the complex place the equation |z + 3i| = |z 1|.
- 5. Expand $(\cos\theta + i\sin\theta)^4$ using the binomial theorem and using deMoivre's theorem. Use your expansions to express $\cos 4\theta$ as a polynomial in $\cos\theta$.

6. Evaluate
$$\left(\frac{\sqrt{3}+i}{2}\right)^3$$
.

- 7. Find the 6th roots of unity and mark the corresponding points on an Argand diagram.
- 8. Find the 4^{th} roots of -81i, leaving your answers in polar form.
- 9. Show that the roots of the equation $z^3 + 1$ are represented on an Argand diagram as the vertices of an equilateral triangle.
- 10. a) If $z = \cos \theta + i \sin \theta$, find in terms of θ
 - i) $z z^{-1}$
 - ii) $z^n z^{-n}$.
 - b) Hence, using the binomial theorem, express $\sin^5 \theta$ in terms of sines of multiples of θ .