ADVANCED HIGHER MATHEMATICS UNIT 2

Outcome 3 HOMEWORK

1. Solve $z^{2}+2 z+5=0$ and represent the solutions on an Argand diagram.
2. Find the square roots of $7-24 i$.
3. Verify that $z=1+i$ is a root of the equation

$$
z^{4}+3 z^{2}-6 z+10
$$

and find the other roots.
4. Interpret geometrically in the complex place the equation $|z+3 i|=|z-1|$.
5. Expand $(\cos \theta+i \sin \theta)^{4}$ using the binomial theorem and using deMoivre's theorem. Use your expansions to express $\cos 4 \theta$ as a polynomial in $\cos \theta$.
6. Evaluate $\left(\frac{\sqrt{3}+i}{2}\right)^{3}$.
7. Find the $6^{\text {th }}$ roots of unity and mark the corresponding points on an Argand diagram.
8. Find the $4^{\text {th }}$ roots of $-81 i$, leaving your answers in polar form.
9. Show that the roots of the equation $z^{3}+1$ are represented on an Argand diagram as the vertices of an equilateral triangle.
10. a) If $z=\cos \theta+i \sin \theta$, find in terms of θ
i) $z-z^{-1}$
ii) $z^{n}-z^{-n}$.
b) Hence, using the binomial theorem, express $\sin ^{5} \theta$ in terms of sines of multiples of θ.

